Harmonic maps into hyperbolic $3$-manifolds
نویسندگان
چکیده
منابع مشابه
Quasiconformal Harmonic Maps into Negatively Curved Manifolds
Let F : M → N be a harmonic map between complete Riemannian manifolds. Assume that N is simply connected with sectional curvature bounded between two negative constants. If F is a quasiconformal harmonic diffeomorphism, then M supports an infinite dimensional space of bounded harmonic functions. On the other hand, if M supports no non-constant bounded harmonic functions, then any harmonic map o...
متن کاملHarmonic Maps between 3 - Dimensional Hyperbolic Spaces
We prove that a quasiconformal map of the sphere S admits a harmonic quasi-isometric extension to the hyperbolic space H, thus confirming the well known Schoen Conjecture in dimension 3.
متن کاملBranched Covers of Hyperbolic Manifolds and Harmonic Maps
Let f : M → N be a homotopy equivalence between closed negatively curved manifolds. The fundamental existence results of Eells and Sampson [5] and uniqueness of Hartmann [15] and Al’ber [1] grant the existence of a unique harmonic map h homotopic to f . Based on the enormous success of the harmonic map technique Lawson and Yau conjectured that the harmonic map h should be a diffeomorphism. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1992
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1992-1100698-9